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Abstract

Purpose Anterior clinoidal meningioma (ACM) remains a challenging lesion to treat surgically due to its intricate neurovas-
cular relationships with surrounding anatomy and often presents with ipsilateral visual loss. Anterior clinoidectomy (AC)
by skilled skull base surgeons enables early optic nerve (ON) decompression, tumor devascularization, and radical tumor
resection. The authors provide an update on ACM surgery, current views on the role of AC and its impact on outcomes in
surgical treatment, as well as a new 2 stage 4 by 4 step concept of ON decompression involving AC.

Methods A systematic review of PubMed and meta-regression of surgically treated ACMs was performed.

Results In total, 908 patients were analyzed; 415 (45.7%) underwent routine AC (performed in all cases) and 493 (54.3%)
underwent selective AC (planned preoperatively). The routine AC cohort showed higher risk for new cranial-nerve (CN)
deficits (12.5% vs. 3.0%; p <0.001), vascular complications (6.7% vs. 3.3%; p=0.02), and new focal neurological deficits
(5.5% vs. 2.3%; p=0.04). No differences were found in visual outcomes, gross-total resection, mortality, recurrence, or other
major complications. Random-effects meta-regression of routine AC showed increased odds of new CN deficit (odds ratio
[OR], 3.34; 95% confidence interval [95% CI], 1.51-7.38; p =0.005; heterogeneity [1’]=60.5%) and vascular complication
(OR, 2.59; 95% CI, 1.05-6.38; p=0.04; I =47.8%), with moderate and substantial heterogeneity among routine AC stud-
ies, respectively.

Conclusions In experienced hands, AC remains an invaluable tool for ACM treatment as it offers more consistent tumor
devascularization, prevention of tumor recurrence, optic nerve decompression, and increased working space, which facili-
tates optimal tumor resection and better long-term control and functional outcome. We propose a new didactical structured
concept of routine AC via 2-stage, 4 by 4 steps to improve the utility of AC and decrease associated operative risks compared
to selective AC.

Keywords Anterior clinoidectomy - Anterior clinoidal meningioma - Skull base surgery - Visual outcome - Optic nerve
decompression
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Introduction

Despite advances in skull base neurosurgery, anterior cli-
noid meningiomas (ACM) remain challenging lesions to
treat surgically due to their intricate relationship to major
surrounding neural and vascular structures [48]. ACMs most
frequently present with progressive visual loss and headache
[22]. The reported rate of visual impairment in patients with
ACM reaches as high as 60%, possibly due to mechanisms
that involve both chronic ischemia and mechanical compres-
sion of the optic apparatus (OA) [3, 22]. Although there have
been many innovations and advancements in microsurgical
techniques over the past few decades—such as AC, open-
ing the falciform ligament, utilizing ultrasonic respirators
and high speed drills with cooling irrigation, subarachnoid
dissection of blood vessels, to name a few—visual improve-
ment remains dissatisfactory with a pooled rate of 48%
reported by a recent study [22].

When compared to meningiomas located more medially
(e.g., planum sphenoidale, tuberculum/diaphragma sellae
meningiomas), visual outcomes in ACM are reported to be
worse [21, 38]. The interference of the tumor with the vas-
cular supply of the OA, along with the associated surgical
manipulation of optic nerves (ONs) under pressure during
tumor resection, significantly increases the risk of injury
and visual deterioration [22, 51]. Currently, the removal of
the anterior clinoid process (ACP) is considered integral
by many authors, including the pioneering work done by
Dolenc and Almefty, as it provides early tumor devascu-
larization, identification, decompression, and decreased ten-
sion of the ON, increased working space and reduces the
probability of inappropriate manipulation of the OA [1, 21,
28-31, 36, 48].

Successful anterior clinoidectomy (AC) may be hindered
by anatomical variations of the ACP and adjacent structures,
including pneumatization of the ACP and ossification of the
adjacent dural ligaments, which results in the formation of
the caroticoclinoid foramen (CCF) and interclinoid osseous
bridge (IOB). These variations may increase the risks of
cerebrospinal fluid (CSF) leak and internal carotid artery
(ICA) injury, respectively [37, 39]. Contemporary ACP
removal is predominantly performed via extradural anterior
clinoidectomy (EAC) with numerous technical variations;
however, both intradural anterior clinoidectomy (IAC) and
hybrid techniques have also been documented in the litera-
ture [6, 39, 50].

Strategies in the surgical management of these complex
skull base tumors and their outcomes vary significantly
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across the medical literature. This paper aims to provide a
summary of relevant anatomy, recent updates, and current
evidence on the surgical management of ACMs with a par-
ticular focus on the surgical techniques employed and their
respective outcomes, as well as a new concept of AC and
decompressions of OA.

Anterior clinoid anatomy overview

The ACP is a bony projection of the lesser wing of the sphe-
noid bone and the lateral wall of the optic canal [13]. It is
characterized by a spiked tetrahedron shape and resembles a
caltrop with three bony fixation points at the base that attach
to the planum sphenoidale medially, the lesser sphenoid
wing laterally, and the optic strut inferomedially [13, 25,
28]. The bony anchors described above serve as key surgical
landmarks that are drilled and detached to facilitate release
of the ACP [3, 30].

Due to its central location at the cranial base, the ACP has
important anatomical relationships with adjacent structures.
It forms the anterior part of the roof of the cavernous sinus,
and its tip is the site of the attachment of dural folds, namely,
the anterior petroclinoid and interclinoid folds [13, 41]. The
inferomedial surface of the ACP is closely related to the
clinoid and ophthalmic segments of the ICA and the oph-
thalmic artery [13]. The medial surface of the ACP forms the
optic canal and is closely related to the canalicular segment
of the ON [3]. Familiarity with these anatomical variations
is essential during ACP removal to minimize the risk of
potential surgical complications.

Anterior clinoidectomy technique

EAC has been extensively described elsewhere [3, 29,
30, 33, 39] and is briefly summarized here. Following the
cranio-orbital skull base approach, the frontobasal dura
mater is peeled off the lateral wall of the cavernous sinus
from the floor of the anterior and middle skull base in
the region of the lesser wing of the sphenoid bone. This
maneuver renders the ACP effectively superficial. The ICA
is exposed extradurally, providing an early opportunity for
temporary clipping if needed. Subsequent ACP removal
is centered primarily on thinning it and disconnecting its
bony anchors, which is usually performed with a high-speed
drill and abundant irrigation; however, alternative non-drill
techniques and bone removal with ultrasonic bone curettes
have also been described [1, 6, 14, 23, 28, 30]. The authors
prefer using a high-speed drill fitted with a 2 mm diamond
burr accompanied by copious cooling saline irrigation to
minimize heat generation and reduce the risk for thermal
injury to the ON. First, the base of the lesser wing, the pos-
terior portions of the orbital roof and lateral wall orbital
wall, and the base of the ACP are removed, followed by
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layered thinning of the ACP body. After peeling the dura
overlying the ACP apex, the optic strut is removed using a
I mm micro-Kerrison and/or Leksell rongeur. The remain-
ing thinned ACP is then carefully mobilized and removed.
Video 1 illustrates the steps of EAC removal and bony optic
canal unroofing.

Based on authors’ experience, the EAC is only one part
of a two-stage, four-step concept of decompressing the OA.
Stage 1 entails the following: (A) patient positioning and
elevation of the musculocutaneous flap; (B) cranio-orbital
pretemporal approach with opening of the superior orbital
fissure; (C) removal of the orbital roof and lateral wall of
the orbit to isolate AC; and (D) opening of the lateral dural
wall of the cavernous sinus, which brings the AC to the sur-
face (Fig. 1). Stage 2 includes the following: (A) EAC, (B)
un-roofing of the optic canal, (C) opening of basal cisterns
and releasing of arachnoid bands tethering the OA; and (D)
opening of the falciform ligament (Fig. 2). In addition, this
technique enables easy proximal access to extradural ICA
below the removed AC and the possibility of optional appli-
cation of temporarily clip, should it become necessary.

IACs, by contrast, are more commonly reported and
employed in cerebrovascular surgery, particularly to expose
the ophthalmic artery and paraclinoid ICA during aneurysm
clip ligation [9]. Proponents of this technique cited the abil-
ity to tailor the bony removal under direct visual control
of the paraclinoid neurovascular structures. However, this
advantage has been disputed, since an EAC affords early
exposure and proximal control of ICA [1, 3, 14, 28, 30]. As
with EAC, lateral ACP disconnection is performed extra-
durally through osteotomy of the lesser wing of the sphe-
noid bone. The remaining steps are performed following
the opening of dura. The dura overlying the ACP is incised
sharply in a curvilinear or cruciate fashion and reflected.
The ACP—and optionally the optic strut and roof of the
optic canal— is then drilled, typically with a high-speed
diamond burr under copious irrigation, or with ultrasonic
bone curettes [2, 9].

In theory, both the EAC and IAC have been described as
having distinctive advantages and trade-offs [50]. With EAC,
the intact dura protects adjacent neurovascular structures
during osteotomy and helps prevent bone dust from entering
the intradural space. However, it is reported to be contrain-
dicated in cases of CCF and IOB, since these variants can
complicate safe extradural dissection. By contrast, the IAC
can be performed when CCF or IOB are present, offering
good visual control of critical neural and vascular elements.
Nevertheless, it carries a higher risk of neurovascular injury
due to the lack of a dural buffer during drilling—raising
the risk of mechanical injury—and the potential for bone
dust collection in the subarachnoidal space, which has been
implicated in postoperative headache [2, 50]. Finally, Mey-
body et al. proposed a hybrid intradural/extradural approach,

supposedly to combine the benefits of purely IAC or EAC
technique while mitigating their respective drawbacks [50].

Materials and methods
Inclusion criteria

For this review of the literature, we followed PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines and recommendations [40]. Studies
were eligible if they included the following criteria: (1)
reported surgically treated ACMs; (2) published through
December 2024 without the backward time limit; (3) speci-
fied the number of patients undergoing AC within the study
cohort; (4) clearly defined indications for performing the
AC; and (5) published in English. We defined these criteria
to select a relatively homogeneous cohort of patients with
clinoidal meningiomas while maximizing the sample size.

Literature search

We performed a PubMed search using the terms “clinoid
meningiomas,” “clinoidal meningiomas,” “clinoid menin-
gioma surgery,” “clinoidal meningioma surgery,” “clinoid
meningioma outcomes,” and “clinoidal meningioma out-
comes,” yielding 276 records. Titles and abstracts were
screened by one author (N.L.) under the supervision of the
senior author (K.I.A.), resulting in 44 articles for full-text
review. Both N.L. and K.I.A. independently evaluated these
articles for relevance and extracted demographic, clinical,
radiological, and follow-up data. Any discrepancies were
resolved by consensus.

Of the 44 full-text articles, 22 were excluded due to indis-
tinct cohorts or insufficient data as defined by our inclusion
criteria. We also screened the reference lists of the remaining
studies for additional eligible reports. The final quantitative
analysis comprised 22 studies encompassing 908 patients
who underwent surgery for anterior clinoidal meningiomas
(Supplemental Data 1) [1, 3, 4, 7, 8, 11, 12, 26, 27, 31,
32, 34, 35, 42-47, 51-53]. Patients were stratified into two
cohorts: routine cohort (AC was performed in all cases), and
selective cohort (AC was reserved for preoperatively defined
indications—e.g., optic canal involvement, clinoid hyperos-
tosis, ICA encasement, etc.). Studies not clearly stating indi-
cations for AC were excluded for further analysis (see Fig. 3
for the flowchart outlining the study selection process).

99 <

Statistical analysis
Descriptive analysis was performed initially with categorical

variables summarized from all studies and reported using
numbers and proportions; continuous variables were shown
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Fig. 1 Illustrated stage 1 of the stepwise right sided approach. A The
patient is positioned supine with the head turned approximately 20°,
and a curvilinear skin incision is made from the superior border of
the zygomatic arch about 1 cm anterior to the tragus, terminating
near the midline behind the hairline. B A standard cranio-orbital cra-

as means. As part of initial sensibility screening, a between-
groups comparison (Routine AC vs. Selective AC) was per-
formed by Fisher’s exact test; outcomes that showed a trend
towards statistical significance with p <0.10 were included
in the final meta-regression. In that case, we performed a
random-effects meta-regression of logit-transformed event
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Periorbita

niotomy is performed. C After release of the meningo-orbital band
and dural peeling of the lateral wall of the cavernous sinus, the orbital
roof and lateral orbital wall are removed. D Exposure reveals cranial
nerves III, IV, and the divisions of V (V1-V3) bringing the ACP to
the surface

proportions, utilizing a continuity correction and estimating
between-study variance by the DerSimonian—Laird method.
Inverse-variance weighting was used throughout, and surgi-
cal strategy (Routine =1, Selective =0) was entered as the
sole moderator to assess its adjusted effect on log-odds of
each outcome. Results were reported via odds ratio (OR)
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Fig. 2 Illustrated stage 2 of the stepwise approach. A Extradural cli-
noidectomy is performed, followed by (B) unroofing of the bony optic
canal. The basal cisterns are then opened. Thickened arachnoid bands

and 95% confidence intervals (95% Cls) and heterogeneity
was quantified by I? and ©%. All analyses were performed
in Python 3.10 using Statsmodels v0.14.0 (Python Software
Foundation, Wilmington, Delaware, United States), and for-
est plots were generated in Matplotlib, a plotting library for
Python. A p-value of 0.05 or less was considered statistically
significant.

Results
Study characteristics

Following study inclusion criteria, a combined cohort with
a total of 908 patients with ACMs from 22 studies were
retrieved from the literature from 1990 to 2024. The size of
the cohorts ranged from 10 to 106 patients. Approximately
616 (67.8%) total patients underwent AC, with propor-
tion varying widely in the selective surgical strategy group
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surrounding the ON and ICA are sharply incised (C). Final decom-
pression is achieved with the release of the falciform ligament (D)

(range, 10.3-57.7%). According to the available data, mean
tumor diameter ranged between 2.1 and 5.1 cm across stud-
ies. Invasion of the cavernous sinus was observed in 14-44%
of patients, optic canal involvement in 3-80%, and major
vessel encasement in 16.7-76.3% cases. Even with consid-
erable reported rates of involvement of adjacent structures,
extent of resection was relatively high with gross total resec-
tion (GTR) achieved in 60-85% of patients, with recurrence
reported in fewer than 15% (range, 0-22.6%).

Visual worsening after ACM surgery across articles
ranged from 0-20%, with most studies reporting postop-
erative deterioration in less than 10% of patients. Other
complications were reported variably but followed similar
rates across studies. New cranial nerve deficits occurred in
0-35% of patients, vascular complications in 0-29%, and
new focal neurological deficits in 0-29%. Cerebrospinal
fluid leak, meningitis, seizures, and wound complications
were each uncommon and reported to be generally under 5%
in most series, with rates ranging 0-6.4%, 0-6.7%, 0-7.6%,
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Identification of studies via databases and registers

Fig.3 PRISMA 2020 flow diagram depicting study selection, showing the number of records identified, screened, assessed for eligibility, and
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included or excluded in the systematic review and the subsequent random-effects meta-regression
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Table 1 Results of systematic review showing complications per sur-

gical strategy

Characteristics Approach p value
Routine AC Selective AC
No. of patients 415 (45.7) 493 (54.3) -
Mean tumor diameter, 3.5 3.6 -
cm
AC performed 415/415 (100.0) 218/493 (44.2) -
Cavernous sinus inva- 83/342 (24.3) 75/344 (21.8) 0.47
sion
Optic canal involvement 28/129 (21.7) 101/399 (25.3) 0.48
Major vessel encase- 149/282 (52.8)  148/242 (61.2) 0.06
ment
New CN deficit 52/415 (12.5) 15/430 (3.5) <0.001
Visual worsening 24/335 (7.2) 26/493 (5.3) 0.3
Vascular complication ~ 28/415 (6.7) 14/430 (3.3) 0.03
New FND 23/415 (5.5) 10/430 (2.3) 0.02
GTR 286/415 (68.9)  326/451 (72.3) 0.3
Mortality 9/415 (2.2) 6/451 (1.3) 0.44
Recurrence 43/394 (10.9) 44/379 (11.6) 0.82
CSF leak 10/394 (2.5) 11/430 (2.6) 0.99
Hydrocephalus 8/415 (1.9) 14/430 (3.3) 0.28
Wound infection 1/415 (0.2) 4/430 (0.9) 0.37
EDH 5/415 (1.2) 2/430 (0.5) 0.28
Meningitis 5/415 (1.2) 3/430 (0.7) 0.5
Seizure 1/415 (0.2) 4/430 (0.9) 0.37

AC Anterior clinoidectomy, CN Cranial nerve, CSF Cerebrospinal
fluid, EDH Extradural hematoma, FND Focal neurological deficit,
GTR Gross total resection

Values are shown as numbers (%) and mean. Data were summarized
across all studies using counts. Some studies did not include all the
data

Comparisons across groups were performed using Fisher's exact tests.
Boldface type indicates statistically significant p value of <0.05

and 0-0.9%, respectively. Perioperative mortality was rare
(<3%), ranging from 0-9.5%.

Quantitative analysis

Of the 908 patients overall, 415 (45.7%) underwent rou-
tine AC and 493 (54.3%) underwent selective AC (Table 1).
Mean tumor diameter in the Routine AC cohort was 3.6 cm
(range, 2.1-5.1), and 3.5 cm (range, 3.0-4.2) in the Selec-
tive AC cohort. Within the Selective AC cohort, three stud-
ies employed multiple predefined indications for AC, and 8
studies had a single predefined indication for AC. The crude
count of ACs performed in the Selective AC cohort was 218
(44.2% of the cohort).

Among Routine AC patients, cavernous sinus invasion
was present in 83 (24.3%), optic canal involvement in 28
(21.7%), and major vessel encasement in 149 (52.8%). In

the Selective AC patients, cavernous sinus invasion occurred
in 75 (21.8%), optic canal involvement in 101 (25.3%), and
major vessel encasement in 148 (61.2%).

Postoperatively, the following differences were found
among patients from the Routine AC cohort versus patients
from the Selective AC cohort, respectively: new cranial
nerve deficits in 52 (12.5%) versus 15 (3.0%); visual worsen-
ing in 24 (7.2%) versus 26 (5.3%); vascular complications in
28 (6.7%) versus 14 (3.3%); new focal neurological deficits
in 23 (5.5%) versus 10 (2.3%); CSF leaks in 10 (2.5%) ver-
sus 11 (2.6%); hydrocephalus in 8 (1.9%) versus 14 (3.3%);
wound infections in 1 (0.2%) versus 4 (0.9%); extradural
hematomas in 5 (1.2%) versus 2 (0.5%); meningitis in 5
(1.2%) versus 3 (0.7%); and seizures in 1 (0.2%) versus 4
(0.9%). Mortality was 9 (2.2%) in the Routine cohort and
6 (1.3%) in the Selective cohort. GTR was achieved in 286
(68.9%) versus 326 (72.3%), and recurrence occurred in 43
(10.9%) versus 44 (11.6%), respectively.

Fisher’s exact test revealed no statistically significant dif-
ferences between the cohorts for visual worsening, GTR,
mortality, recurrence, CSF leak, hydrocephalus, wound
infection, extradural hemorrhage, meningitis, or seizure.
It did however identify statistically significant differences
between cohorts—compared to patients in the Selective
cohort, Routine AC patients had significantly higher risks
of new cranial-nerve deficits (52/415 [12.5%] vs. 15/493
[3.0%]; p<0.001), vascular complications (28/415 [6.7%]
vs. 14/493 [2.8%]; p=0.02), and new focal neurological
deficits (23/415 [5.5%] vs. 10/493 [2.0%]; p=0.04).

Results of random-effects meta-regression (Routine =1
vs. Selective =0) revealed that the Routine AC was asso-
ciated with over a threefold increase in odds of new cra-
nial nerve deficit (OR, 3.34; 95% CI, 1.51-7.38; p=0.005;
I?’=60.5%; ©2=0.52) and a 2.6-fold increase in odds of vas-
cular complication (OR, 2.59; 95% CI, 1.05-6.38; p=0.04;
1 =47.8%, t>=0.44), with a borderline effect on new focal
neurological deficit (OR, 2.89; 95% CI, 0.99-8.43; p=0.05;
I>=53.3%, ©*=0.66) (Figs. 4, 5 and 6). All three models
exhibited moderate or substantial heterogeneity among Rou-
tine AC studies.

Discussion

Removal of the ACP is a key step for both skull base and
cerebrovascular neurosurgeons for accessing lesions located
in the sellar and parasellar regions [1, 14, 28, 30]. It was
first described intradurally by Drake et al. and was truly pio-
neered and popularized by Dolenc as the extradural removal
of the ACP for vascular lesions involving the cavernous
sinus in his pioneer contributions [5, 14—19]. Currently, in
the context of ACMs, it is considered an integral part of the
anterolateral skull base approach due to many advantages
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that include early tumor devascularization, decreased risk  reducing the possibility for inadvertent neurovascular injury
of tumor recurrence (as meningioma frequently invades the during the resection [1, 3, 14, 28, 30].

ACP and optic canal), decompression of the optic apparatus, Strategies for AC removal in ACM surgery vary in
decreasing ON tension, increasing optico-carotid space, and  the medical literature, as do the indications and reported
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outcomes. Some authors reserve ACP removal for selected
cases with specific clinical and radiological features, such as
ACP hyperostosis, optic canal invasion, preoperative visual
impairment, large and giant size, firm consistency, and ICA
encasement [4, 7, 27, 31, 32, 35, 43, 46, 51, 53]. Others, by
contrast, perform it routinely in their practice for all ACM
cases [1, 8, 11, 12,22, 26, 28, 30, 34, 42, 45, 47, 52], which
is particularly important as ACM frequently invades the
ACP and optic canal, and such invasion cannot be reliably
predicted on preoperative imaging.

As with many suprasellar meningiomas, one of the most
important goals of surgery is visual improvement [20]. A
recently published meta-analysis found that studies advocat-
ing EAC reported visual improvement rates at the upper end
of pooled estimates without a greater risk to the ON [22].
Our analysis similarly showed that routine clinoidectomy
was not associated with increased risk of visual deteriora-
tion. In the hands of expert surgeons, broader experience
with and routine performance of AC carries minimal risk to
visual function while potentially reducing tumor recurrence
[1, 8, 10, 28, 30].

Results from our meta-regression analysis using surgical
strategy as a sole moderator must be interpreted cautiously.
While AC clearly offers many advantages in operative treat-
ment of ACMs, such as early decompression and release
of pressure and improved vascularization of ON, increased
optic carotid space, removal of tumour in the optic canal,
and ACP, we found an increased risk of new CN deficit, vas-
cular complication, and new focal nerve deficit associated

with routine AC in our literature review. Although the find-
ings may favour a selective AC strategy with respect to com-
plications, heterogeneity among reported rates in studies was
moderate (47.8%) for vascular injury and substantial new
cranial nerve deficit (60.5%), based on thresholds from Hig-
gins et al. [24]. This variability likely reflects differences in
surgeon experience, type of skull base approach used, and
annual institutional case volume—these potential sources of
inconsistency should be explored in future subgroup analysis
or a more comprehensive meta-regression analysis.

We believe that a stepwise extradural bone work extend-
ing in the anterior and middle cranial fossae creates a com-
fortable surgical corridor that allows bringing the AC to the
“surface,” permits its safe thinning, facilitates early decom-
pression of the OA, and reduces ON tension. In prior work,
we described a stepwise technique for sellar and parasellar
lesions—including ACMs—comprising extradural clinoid
removal, optic canal unroofing, sharp dissection of thick-
ened arachnoid bands tethering the OA, and incision of the
falciform ligament, all important steps performed before
safe tumor resection [3, 29, 30]. We hypothesize that this
newly introduced didactical concept of 2 stages with 4 by
4 steps decreases the increased risks of routine, compared
to selective AC results noted in our literature review, while
offering numerous advantages. This finding supported by our
experimental work and practice, demonstrated in our series
of ACMs and para-sellar tumours, and reported by many
other authors [1, 8, 30, 31, 49]. Future prospective studies
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with larger cohorts and long-term follow-up will be needed
to confirm these benefits.

Crude rates of other postoperative complications—
including CSF leak, hydrocephalus, surgical site infection,
meningitis, extradural hematoma, and seizure—did not
show a difference between groups in our analyses. Nota-
bly, CSF leak rates were nearly identical among the Routine
and Selective AC cohorts (2.5% vs. 2.6%), despite AC often
being cited as an independent risk factor for leakage [37].
Similarly, perioperative mortality was low; routine AC did
not increase mortality when compared with Selective use
2.2% vs. 1.3%).

Limitations

This study has several important limitations. First, all data
were derived from retrospective studies, which are subject to
selection and reporting bias, and no randomized comparison
between routine and selective AC exists. Second, substantial
between-study heterogeneity (I? up to~60%) likely reflects
variability in surgeon experience, case mix, outcome defi-
nitions, and operative techniques; the absence of individual
patient data precluded adjustment. Third, key variables—such
as ACP invasion, cavernous sinus involvement, optic canal
tumor extension, and vessel encasement—were underreported
or inconsistently defined across studies, resulting in missing
data and preventing pooled analyses for some outcomes.

Conclusion

We reviewed relevant anatomy and relationships of the ACP,
technical nuances of AC, and performed a comprehensive
systematic review of the literature. The review revealed
moderate to substantial heterogeneity among studies of rou-
tine AC; therefore, the results must be interpreted cautiously,
considering the possible influence of the utilized operative
technique, case volume, and surgeon experience with the
technique.

While keeping in mind relevant anatomy and clinically
important anatomical variations, ACP removal in experi-
enced hands, combined with a cranio-orbital zygomatic pre-
temporal approach—including removing the roof and lateral
wall of orbit, opening the dura of the lateral wall of the cav-
ernous sinus and SOF—expands the surgical corridor for
safe ACM resection. This 2-stage with 4 by 4 steps strategy
reduces tension on and enables early decompression of the
OA, facilitates radical tumor resection, and may be asso-
ciated with higher improved rates of postoperative visual
improvement and lower tumor recurrence, with decreased
additional risk or morbidity, and decreasing increased risk
discrepancy between routine and selective AC.

@ Springer
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