Multilevel bilateral calcified thoracic spinal synovial cysts

Report of 4 cases

Rami Almefty, B.A., Kenan I. Arnaout, M.D., and Bruce L. Webb, M.B.B.Ch.

Seminole-Murphy Clinic and Department of Neurosurgery, University of Tennessee Health Science Center, and Pathology Group of the Mid-South, Memphis, Tennessee

Synovial cysts of the thoracic spine are quite rare. Bilateral presentation is even less frequent, and to the authors' knowledge, multilevel occurrence and consistent calcification have not been reported to date. The pathogenesis of these cysts is unknown and their histological features have not been studied. They may be overlooked as the cause of myelopathy. The authors report a series of 4 cases of bilateral, multilevel, consistently calcified thoracic synovial cysts. The details of clinical, radiological, and pathological findings are presented, along with a review of the literature, and a hypothesis on the pathogenesis of these lesions is formulated based on our clinical and pathological studies performed in these patients. DOI: 10.3171/2008.5.SP08

Key Words: histological feature • spine • synovial cyst • thoracic spine • thoracic synovial cyst

SYNOVIAL cysts of the thoracic spine are rare, and we found only 20 other reported cases. We describe 4 cases involving bilateral multilevel CTSSCs that induced myelopathy. Bilateral presentation is particularly unusual, and we believe that multilevel occurrence with consistent calcification is unique to our cases. Accurate diagnosis is made using MR imaging. Surgery involving laminectomy and removal of the cysts has proven to be a very successful treatment. In this report we aim to heighten awareness of the CTSSC as a possible cause of thoracic myelopathy and to demonstrate the benefits of surgical removal. Furthermore, we seek to provide insight into the pathogenesis of these lesions, for which a definitive explanation has not been ascertained.

Case Reports

The medical records, imaging, and pathological findings in 4 patients (3 men and 1 woman) were retrospectively reviewed. These patients presented with myelopathy and were treated surgically over the last 3 years by the senior author (K.I.A.) at the Seminole-Murphy Clinic. The demographic data, clinical findings, involved levels, and outcomes are presented in Table 1. On MR imaging these patients demonstrated compression of the spinal cord by CTSSCs at multiple levels and bilaterally induced spinal stenosis (Fig. 1). A hyperintense signal in the spinal cord was observed on T2-weighted MR images. Patients were treated with laminectomy at the involved levels, and all existing lesions were completely resected in one session. Drilling of the CTSSC with a diamond burr laterally allowed its gentle dissection from the dural sac.

Pathological specimens obtained in all cases showed a synovial lining of the cyst (Fig. 2). Furthermore, a consistent sequence of vascular granulation tissue, fibrous tissue formation, chondroid metaplasia, cartilaginous transformation, and calcification was found (Figs. 3 and 4). All our patients experienced complete symptom resolution after a mean follow-up interval of 8 months, and in each case postoperative MR imaging showed a total decompression of the spinal cord at all levels.

Discussion

Synovial Cysts

Synovial cysts of the spine are intraspinal extradural cysts that arise from facet joints. Synovial cysts have been reported in the lumbar, cervical, and thoracic segments; the
Table 1

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age/Sex</th>
<th>Symptoms</th>
<th>Sx</th>
<th>Sensory Level</th>
<th>T10, T11</th>
<th>Motor Level</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48, M</td>
<td>L.E numbness & stiffness, difficulty w/ gait, arm & leg muscle strength, bowel dysfunction</td>
<td>bilat.</td>
<td>T-10, T-11</td>
<td>bilat.</td>
<td>bilat.</td>
<td>Complete recovery; normal neurological exam w/ 9 mos.</td>
</tr>
<tr>
<td>2</td>
<td>54, F</td>
<td>L.E weakness & numbness, difficulty w/ gait</td>
<td>bilat.</td>
<td>T-7, T-9</td>
<td>bilat.</td>
<td>bilat.</td>
<td>No motor recovery; normal neurological exam w/ 9 mos.</td>
</tr>
<tr>
<td>3</td>
<td>48, F</td>
<td>Multisite & low back pain, numbness in feet, shoulder & arm weakness, bowel dysfunction</td>
<td>bilat.</td>
<td>T-9, T-11</td>
<td>bilat.</td>
<td>bilat.</td>
<td>Complete recovery; normal neurological exam w/ 7 mos.</td>
</tr>
<tr>
<td>4</td>
<td>73, F</td>
<td>L.E numbness, history of myelography on cervical spine preoperatively</td>
<td>bilat.</td>
<td>T-2, T-3</td>
<td>bilat.</td>
<td>bilat.</td>
<td>Complete recovery; normal neurological exam w/ 7 mos.</td>
</tr>
</tbody>
</table>

Notes: DTR = deep tendon reflex; L.E = lower extremity; T.E = upper extremity.

Lumbar Sacral Cysts

Majority occur in the lumbar segment, with fewer in the cervical level, and we could only find 20 other reported cases in the thoracic spinal segment. The cysts may occur unilaterally or in rare cases bilaterally. We believe our cases constitute the first report of multisegmental recurrence. The cysts may calcify, although this is rare, particularly for lumbar cysts. It may be filled with clear serous fluid or gas, and the walls may be composed of loose myxoid connective or fibrous tissue.

Thoracic Sympathetic Cyst

Paraparesis is the most commonly encountered symptom caused by sympathetic cysts of the thoracic spine. Other common symptoms include an unstable gait, middle back pain, lower extremity spasticity, and urinary and sexual dysfunction. Postoperative diagnosis of symptomatic cysts can be accomplished using MRI imaging. The cyst appears as an extradural round mass located adjacent to a facet joint. Cord compression and spinal stenosis are also apparent on MR imaging.

Surgery involving bilateral laminectomy of the affected level and removal of the symptomatic cyst from the dura mater has been the standard treatment. The outcome following surgical removal of the cysts has been quite rewarding. All but one of the other reported thoracic cases were treated surgically, and only one showed no improvement. The majority...
Multilevel bilateral calcified thoracic spinal synovial cysts

of patients experience complete symptom resolution or drastic improvement (Table 2).

Differential Diagnosis of CTSSCs

Synovial cysts differ from ganglion cysts in that the former have a true synovial lining (Fig. 2). Ganglion cysts are believed to develop from synovial cysts that disconnect from the adjacent joint. The distinction between synovial and ganglion cysts is not always made in the literature because they have similar clinical and radiological features.11,12

Thoracic OFL and tumoral calcinosis calciurn phytate deposition disease of the ligamentum flavum produce similar myelopathic features, but have distinguishing anatomical, radiological, and pathological characteristics from CTSSCs. According to our literature review, OFL is mainly reported in the older male population in Japan, with recent reports from China, India, and Africa.13-15 Dense OFL usually begins laterally and extends to the intralaminar portion of the ligament. Radiologically, dense ossification is depicted on computed tomography scans, with a hypointense signal on T1- and T2-weighted MR images. Pathologically, OFL demonstrates a pattern of endochondral

Fig. 2. Photomicrograph showing a cyst (asterisk) with synovial lining (black arrow), fibrosis (F), focal calcification (white arrow), macrophages (M), and few chondroid cells (C). H & E, original magnification × 40.

Fig. 3. Photomicrographs demonstrating the proposed stages in the process of pathogenesis in thoracic synovial cysts
A: Vascular granulation tissue (asterisk). B: Fibrous tissue (F) and calcification (C). C: Chondroid metaplasia (asterisk) and ligamentous transformation (asterisk). D: Calcification. H & E, original magnification × 100.

J Neurosurg: Spine / Volume 87 / May 2008
Fig. 4. Photomicrograph showing CD34 positive endothelial cells (dark staining) in granulation tissue (arrow). Immunostaining. Original magnification × 200.

R. Almeida, K. I. Arnaoutović, and B. L. Webber

Involving the spine tends to occur in the elderly population, is more common among Japanese patients, and shows a female predominance as well as the cervical and lumbar segment preference. Computed tomography scanning shows nodular or ovoid calcified lesions that are continuous with the lumina and are hypointense on both T1- and T2-weighted MR images. They appear in the region of the ligamentum flavum. Histological specimens show crystals with a characteristic red or rectangular shape, which are embedded in fibrocartilaginous stroma and are birefringent in polarized light.13

Hypothesis for Pathogenesis

The most widely accepted hypothesis for the pathogenesis of lumbar synovial cysts involves focal degeneration brought on by various substrates that leads to weakening in the joint's capsule. This weakening allows for herniation of the synovium, and synovial fluid fills the newly formed cavity and becomes a cyst, which communicates with the associated joint.14 Proposed factors involved in the degenerative process include wear due to excessive movement, spondylolisthesis,13 and trauma. Alternate proposed mechanisms for synovial cyst development are mixed degeneration, increased production of hyaluronic acid by fibroblasts in response to repeated stress, and nonspecific

<table>
<thead>
<tr>
<th>Author(s) & Year</th>
<th>Patient Age</th>
<th>Sex</th>
<th>Class of Level</th>
<th>Level</th>
<th>Size</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman et al., 1987</td>
<td>72 M</td>
<td></td>
<td>lumbar paravertebral L2 weakness & numbness, paraspinal tenderness & nodules L1-L2 sensory level</td>
<td>T11-L1 L3-L4 L5-S1 & L3-S1</td>
<td>1-4-5</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Aoki et al., 1991</td>
<td>59 M</td>
<td></td>
<td>lumbar paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T7-L4</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Lopes et al., 1992</td>
<td>45 M</td>
<td></td>
<td>lumbar paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T1-L3</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Dobrev et al., 1993</td>
<td>45 M</td>
<td></td>
<td>lumbar paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T9-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Freund et al., 1994</td>
<td>50 M</td>
<td></td>
<td>lumbar paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T11-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Proz et al., 1995</td>
<td>45 F</td>
<td></td>
<td>lumbar paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T9-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Holman et al., 1994</td>
<td>54 F</td>
<td></td>
<td>thoracic paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T4-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Houghton et al., 2000</td>
<td>59 M</td>
<td></td>
<td>thoracic paravertebral L2 weakness & numbness, paraspinal tenderness</td>
<td>T4-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Leprin et al., 2000</td>
<td>25 M</td>
<td></td>
<td>thoracic paravertebral L2 weakness, paraspinal tenderness & numbness</td>
<td>T12-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Graham et al., 2001</td>
<td>48 F</td>
<td></td>
<td>thoracic paravertebral L2 weakness, paraspinal tenderness & numbness, paraspinal tenderness & numbness</td>
<td>T12-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
<tr>
<td>Colcutt et al., 2002</td>
<td>45 M</td>
<td></td>
<td>thoracic paravertebral L2 weakness, paraspinal tenderness & numbness, paraspinal tenderness & numbness</td>
<td>T12-L1</td>
<td>12-3</td>
<td>laminectomy</td>
<td>complete resolution</td>
</tr>
</tbody>
</table>

NR = not reported.

476
proliferation of mesenchymal cells. The proposition that synovial cysts occur due to a degenerative process in the lumbar and cervical spine is supported by the fact that the majority of these lesions occur in the most mobile portions and that they tend to occur in an elderly population.

The rarity of synovial cysts in the thoracic region is believed to be due to the relative immobility of the thoracic spine. Nevertheless, due to this very characteristic of the thoracic spine, we do not believe that increased facet joint motion and microtrauma, as proposed by some authors as the cause of lumbar synovial cysts, is the probable pathogenesis of synovial cysts in the thoracic spine. The majority of the synovial cysts that do occur in the thoracic region appear in the T10–12 interphase. Because the T10–12 segments of the spine represent the transitional region between the relatively immobile thoracic spine and the highly mobile lumbar segments, it had been postulated that the difference in mobility increases the stress on this segment and accelerates the degenerative changes.

Our cases differ from the majority of other thoracic cases, however, in that we had a slightly younger population, the majority of whom were women; all lesions were bilateral, multilevel, and calcified, and the lesions occurred throughout the thoracic segment. Therefore, the aforementioned hypothesis may not account for all thoracic synovial cysts. Based on the histological findings in the specimens we have obtained, we hypothesize that the thoracic cysts result from the thoracic facet joint and produce increased frictional tissue (Fig. 3A). This then transforms into fibrous tissue (Fig. 3B), which undergocs chondroid metaplasia—a cartilaginous transformation (Fig. 3C), and eventually calcifies (Fig. 3D). The occurrence of neovascularization is supported by the appearance of CD34-positive endothelial cells, which are apparent in the histological specimen (Fig. 4).

Conclusions

Although they are rare, CTSSCs must be considered in the differential diagnosis of myelopathy. Preoperative diagnosis can be made using MRI imaging. The lesions can occur bilaterally and at multiple levels. Surgical removal of these lesions is associated with favorable outcomes and limited recurrence. We suggest that all CTSSCs, bilateral, and at multiple levels, should be resected in one surgical setting. We hypothesize that the pathogenesis of these cysts consists of a capsular inflammatory process, with neovascularization and eventual calcification.

References

Accepted January 7, 2008.
Address correspondence to Kenar I, Amatuvic, M.D., Sciences
Murphy Center, 6255 Humphrey Boulevard, Memphis, Tennessee
38120. email: kenar.amatuvic@yahoo.com.